Since the third and last factors are repeated, therefore deleting them once i.e., retaining one of them, we get the Product of Sums form as:

$$= (\overline{A} + B + C) (\overline{A} + \overline{B} + C) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) (A + B + \overline{C})$$

$$= (100) (110) (101) (111) (001)$$

= II(4,6,5,7,1)

= II (1,4,5,6,7) is the required POS form. To find the SOP form of f(A,B,C) we multiply each factor by the absent variables $(C+\overline{C})$ and $(B+\overline{B})$ respectively.

Thus
$$f(A,B,C) = \overline{A} (B + \overline{C})$$

= $\overline{A}B + \overline{A}\overline{C}$
= $\overline{A}B (C + \overline{C}) + \overline{A}\overline{C} (B + \overline{B})$
= $\overline{A}BC + \overline{A}B\overline{C} + \overline{A}B\overline{C} + \overline{A}B\overline{C}$ (delete $\overline{A}B\overline{C}$ once as it is repeated twice)
= $\overline{A}BC + \overline{A}B\overline{C} + \overline{A}B\overline{C}$
= $011 + 010 + 000$
= $\Sigma(3,2,0)$
= $\Sigma(0,2,3)$ is the required SOP form.

EXAMPLE 33: Determine the canonical product of sums (POS) form and canonical sum of products (SOP) form of the switching functions: $f(A, B, C) = \overline{B} \cdot C$

Solution:
$$f(A,B,C) = \overline{B} \cdot C$$

The function has three-variables A, B, C. In the first factor (\overline{B}) , the variables A and C are absent and in the second factor (C), the variables A and B are absent. Therefore, adding $A\overline{A} + C\overline{C}$ to the first factor and adding $A\overline{A} + B\overline{B}$ to the second factor, we get:

$$f(A,B,C) = (\overline{B} + A\overline{A} + C\overline{C}) \cdot (C + A\overline{A} + B\overline{B})$$

$$= [(\overline{B} + A) \cdot (\overline{B} + \overline{A}) + \overline{C}C] [(C + A) \cdot (C + A) + \overline{B}B]$$
[using distributive property]
$$= [(\overline{B} + A) \cdot (\overline{B} + \overline{A}) + C] [(\overline{B} + A) \cdot (\overline{B} + \overline{A}) + \overline{C}] [(C + \overline{A}) \cdot (C + \overline{A}) + B]$$

$$[(C + A) \cdot (C + \overline{A}) + \overline{B}]$$
 [again using distributive property]
$$= [C + (\overline{B} + A) \cdot (\overline{B} + \overline{A})] [(\overline{C} + (\overline{B} + A) \cdot (\overline{B} + \overline{A})] [B + (C + A) \cdot (C + \overline{A})]$$

$$[\overline{B} + (C + A) + (C + \overline{A})]$$

Again by applying distributive property, we get

$$= (C + \overline{B} + A) (C + \overline{B} + \overline{A}) (\overline{C} + \overline{B} + A) (\overline{C} + \overline{B} + \overline{A}) (B + C + A)$$

$$(B + C + \overline{A}) (\overline{B} + C + A) (\overline{B} + C + \overline{A})$$

$$= (A + \overline{B} + C) (\overline{A} + \overline{B} + C) (A + \overline{B} + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) (A + B + C)$$

$$(\overline{A} + B + C) (A + \overline{B} + C) (\overline{A} + \overline{B} + C).$$

Retaining the repeated factors only once, i.e., by deleting the last two factors, we get.

$$= (A + \overline{B} + C)(\overline{A} + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + \overline{C})(A + B + C)(\overline{A} + B + C)$$

which is the required POS form, and further it can be written as f(A, B, C)

$$= (A + \overline{B} + C) (\overline{A} + \overline{B} + C) (A + \overline{B} + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) (A + B + C)$$

$$= (010) (110) (011) (111) (000) (100)$$

$$= II (2,6,3,7,0,4)$$

$$= II (0,2,3,4,6,7) \text{ in POS form.}$$

To obtain the SOP form of the above function $f(A, B, C) = \overline{B} \cdot C$, we multiply this factor by $A + \overline{A}$ as the variable A is missing

$$\therefore f(A,B,C) = \overline{B} \cdot C$$

$$= (A + A) \cdot \overline{B}C \quad \text{worked never } E = E \text{ worked never } E = E \text{ of } E = E \text{ of$$

:. $A\overline{B}C + \overline{A}\overline{B}C$ or $\Sigma(1,5)$ is the required SOP form of the given function.

EXAMPLE 34: Find the minterms or canonical sum of products (SOP) form and maxterms or canonical product of sums (POS) form for function f(A,B,C) = AC + AC.

Solution:

$$(A,B,C) = \overline{AC} + A\overline{C}$$

To obtain the minterms or SOP form of above function, we first examine all the terms of the expression and conclude that variable B is missing in both the terms. Therefore we multiply both these terms by $B + \overline{B}$

$$\therefore f(A,B,C) = \overline{AC} + \overline{AC}$$

$$= \overline{AC} (B + \overline{B}) + A\overline{C} (B + \overline{B})$$

$$= \overline{ACB} + \overline{ACB} + A\overline{CB} + A\overline{CB}$$

$$= \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C}$$

$$= 011 + 001 + 110 + 100$$

$$= \Sigma(3,1,6,4)$$
(2.6.1) $= \Sigma(1,3,4,6)$

 $\therefore \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C}$ are the required minterms and $\sum (1,3,4,6)$ is the canonical SOP form of the function. To obtain maxterms or POS form of the function $f(A,B,C) = \overline{AC} + \overline{AC}$, we first convert it into a product of sums.

$$f(A,B,C) = \overline{AC} + \overline{AC} + \overline{AA} + \overline{CC}$$

$$= \overline{AC} + \overline{AA} + \overline{AC} + \overline{CC}$$

$$= \overline{A}(C + A) + \overline{C}(A + C)$$

$$= (C + A)(\overline{A} + \overline{C})$$

Since variable B is missing in both of these, therefore we add $B\overline{B}$ to both these factors.

$$f(A,B,C) = (C + A + B\overline{B}) (\overline{A} + \overline{C} + B\overline{B})$$

$$= (C + A + B) (C + A + \overline{B}) (\overline{A} + \overline{C} + B) (\overline{A} + \overline{C} + \overline{B})$$

$$= (A + B + C) (A + \overline{B} + C) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

$$= (000) (010) (101) (111)$$

$$= II (0,2,5,7)$$

.: $(A+B+C)(A+\overline{B}+C)(\overline{A}+B+\overline{C})(\overline{A}+B+\overline{C}) = II(0,2,5,7)$ are the required maxterms or canonical product of sums form of the given function.

EXAMPLE 35: Find the maxterms or canonical POS form of function f(A, B, C), which is represented by the truth Table 2.13 given below:

Table 2.13							
Decimal Value	A	В	С	(c) f = (
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 1 1	0 0 0 1 1 0 1 0 1 0				

Table 2.13

Solution:

From the above table it is evident that the decimal values for which the function f assumes the value '0' are 0,3,5,6.

Thus by definition, function f(A,B,C) is the product of these sum terms i.e.,

$$= II (0,3,5,6) = (000) (011) (101) (110) (110)$$

:. $f(A,B,C) = (A+B+C)(A+\overline{B}+\overline{C})(\overline{A}+B+\overline{C})(\overline{A}+B+C)$ or II(0,3,5,6) are the required maxterms or canonical POS form of the given function

EXAMPLE 36: From the truth table given below in Table 2.14 express function f in sum of minterms and product of maxterms. Also obtain the simplified function f(A,B,C) in the canonical sum of products (SOP) form and product of sums (POS) form.

Table 2.14

Decimal Value		$B \hookrightarrow B$	121 1 9x r C	15 + Jr. (
0	0	0	0	0
1	0	0	14 1	+ 3) h =
2	0	1	(30° F)	h + p) =
3	0	1	1	0
and or 4 3 bbn o	/ 99LI 579B	of force.	ne i 0 bor	ssim Oi S old
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Solution:

From the above table it is clearly visible that the decimal values for which the function f assumes the value '1' are $1,2,5,6 = \sum (1,2,5,6)$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$f = 001 + 010 + 101 + 110$$

$$f = \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$$

$$f = 001 + 010 + 101 + 110$$

$$f = \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 110$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101 + 101$$

$$f = 001 + 010 + 101$$

The decimal values for which the function f assumes value '0' in the above table are 0,3,4,7.

$$= II (0,3,4,7)$$

$$\therefore f = (000) (011) (100) (111)$$

$$= (A + B + C) (A + \overline{B} + \overline{C}) (\overline{A} + B + C) (\overline{A} + \overline{B} + \overline{C})$$

Hence the sum of minterms = $\sum (1,2,5,6)$

Product of maxterms = II(0,3,4,7)

Function f in SOP form $= \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}C + AB\overline{C}$

Function f in POS form = $(A + B + C) (A + \overline{B} + \overline{C}) (\overline{A} + B + C) (\overline{A} + \overline{B} + \overline{C})$

EXAMPLE 37: Find the sum-of minterms and function f(A,B,C,D) in canonical sum of products form for the function f(A,B,C,D) = A.C.

Solution:

$$f(A,B,C,D) = AC$$

Since variables B and D are missing, therefore by multiplying it by $B + \overline{B}$ and $\overline{D} + D$, we get:

$$f(A,B,C,D) = AC(B+\bar{B}) (D+\bar{D})$$

$$= (ACB + AC\bar{B}) (D+\bar{D})$$

$$= ACBD + ACB\bar{D} + AC\bar{B}\bar{D} + AC\bar{B}\bar{D}$$

$$= ABCD + ABC\bar{D} + A\bar{B}CD + A\bar{B}C\bar{D}$$

which is the required sum of minterms of function.

$$f(A,B,C,D) = ABCD + ABC\overline{D} + A\overline{B}CD + A\overline{B}C\overline{D}$$
= 1111 + 1110 + 1011 + 1010

[: in SOP form an uncomplemented variable is represented by '1' and a complemented variable by '0']

$$= \sum (15,14,11,10)$$

= $\sum (10,11,14,15)$

which is the required SOP form of the switching function.

EXAMPLE 38: Express $f(A, B, C, D) = AB + \overline{ABC} + \overline{CD}$ as the sum of minterms and as the product of maxterms.